Switching, relay and complementarity systems: a tutorial on their well-posedness and relationships

نویسندگان

  • Carmina Georgescu
  • Vincent Acary
  • Bernard Brogliato
چکیده

In this work we focus on analyzing the relationships between switching systems defined from a partition of the state space into convex cells, and relay or complementarity dynamical systems, which are other classes of discontinuous systems. First the conditions guaranteing the continuity of the vector field of the switching system at the cells boundaries (in which case the switching system is an ordinary differential equation with Lipschitz right-hand-side) are recalled. Then well-posedness results (i.e. results on the existence and the uniqueness of solutions) for different classes of relay and complementarity systems which are also switching systems are reviewed. The reverse issue (when can a switching system be rewritten equivalently as a relay or a complementarity system) is also tackled. Many examples from Mechanics, Circuits, Biology, illustrate the developments all through the paper. The paper focuses on systems with continuous solutions (i.e. with no state jumps). Convexity is the central property. Key-words: discontinuous systems, relay systems, well-posedness, complementarity systems, piecewise linear systems, dissipative systems, maximal monotone operators, Lur’e systems, multivalued systems, differential inclusions, Filippov’s systems. ∗ University Politehnica of Bucharest, Faculty of Applied Sciences, Spl. Independenţ ei, 313, 060042, Bucharest, Romania; Email: carmina [email protected] † INRIA, BIPOP team-project, Inovallée, 655 avenue de l’Europe, 38330, Montbonnot, France ‡ INRIA, BIPOP team-project, Inovallée, 655 avenue de l’Europe, 38330, Montbonnot, France in ri a -0 0 6 3 2 1 0 5 , v e rs io n 1 1 3 O c t 2 0 1 1 ha l-0 06 46 98 2, v er si on 1 1 Fe b 20 13 Systèmes à commutations, à relais et systèmes de complémentarité: existence et unicité des solutions, et équivalences Résumé : Dans cet article nous nous concentrons sur l’analyse des relations entre les systèmes à commutations définis à partir d’une partition de l’espace d’état en cellules convexes, les systèmes à relais et les systèmes de complémentarité. En premier lieu les conditions garantissant la continuité du champ de vecteur sur le bord des cellules (auquel cas le système est une ODE avec second membre Lipschitz) sont rappelées. Ensuite des résultats d’existence et unicité concernant diverses classes de systèmes à relais et de complémentarité qui sont des systèmes à commutations sont passés en revue. Le problème inverse (quand est-ce qu’un système à commutation peut être représenté comme un système à relais ou de complémentarité) est abordé aussi. De nombreux examples de la mécanique, des circuits, de la biologie, illustrent les développements. Le cas des solutions discontinues n’est pas abordé. La convexité apparait comme la propriété centrale de ces systèmes. Mots-clés : systèmes discontinus, systèmes à relais, existence et unicité de solutions, systèmes de complémentarité, systèmes dissipatifs, opérateurs maximaux monotones, systèmes de Lur’e, inclusions différentielles, systèmes de Filippov. in ri a -0 0 6 3 2 1 0 5 , v e rs io n 1 1 3 O c t 2 0 1 1 ha l-0 06 46 98 2, v er si on 1 1 Fe b 20 13 Switching, relay and complementarity systems 3

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On solution concepts and well-posedness of linear relay systems

In this paper we study the well-posedness (existence and uniqueness of solutions) of linear relay systems with respect to two di5erent solution concepts, Filippov solutions and forward solutions. We derive necessary and su7cient conditions for well-posedness in the sense of Filippov of linear systems of relative degree one and two in closed loop with relay feedback. To be precise, uniqueness of...

متن کامل

Well-posedness of the Complementarity Class of Hybrid Systems

One of the most fundamental properties of any class of dynamical systems is the study of well-posedness, i.e. the existence and uniqueness of a particular type of solution trajectories given an initial state. In case of interaction between continuous dynamics and discrete transitions this issue becomes highly non-trivial. In this survey an overview is given of the well-posedness results for com...

متن کامل

Tutorial Review: Simulation of Oscillating Chemical Reactions Using Microsoft Excel Macros

Oscillating reactions are one of the most interesting topics in chemistry and analytical chemistry. Fluctuations in concentrations of one the reacting species (usually a reaction intermediate) create an oscillating chemical reaction. In oscillating systems, the reaction is far from thermodynamic equilibrium. In these systems, at least one autocatalytic step is required. Developing an instinctiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011